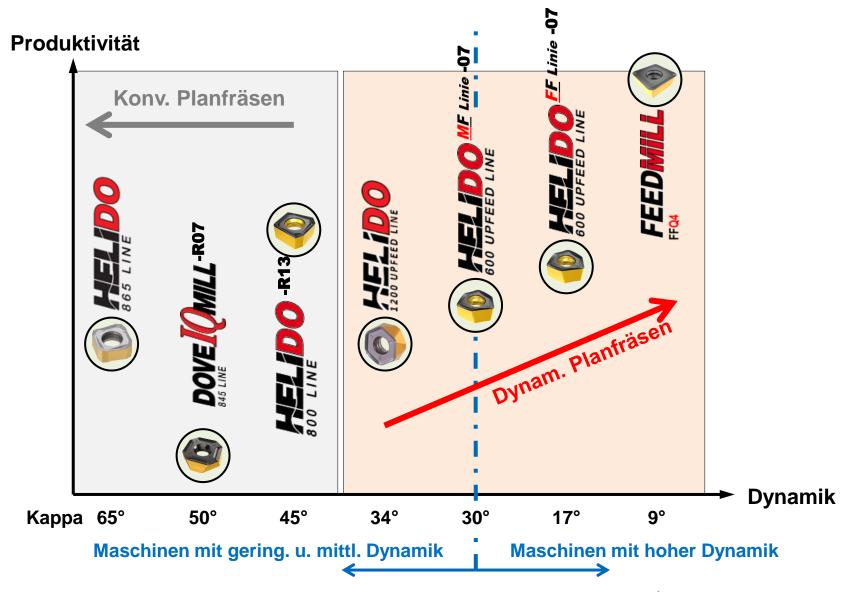
User Guide Planfräsen

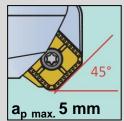


Inhaltsübersicht

Use	er Guide Navigator:	Seite:
1.	Einteilung Planfrässysteme	3 - 4
2.	Die 3 Basis-Frässysteme	5
3.	Übersicht der Frässysteme / Anwendungsempfehlung	6 - 9
4.	Vorschub Empfehlungen in Abhängigkeit der Materialgruppe	10 - 16
5.	WSP Schneiden-Geometrie Zuordnung	17 - 19
6.	Schneidstoffübersicht / Schnittgeschwindigkeits-Empfehlungen	20 - 22
7.	Schneidstoffsorten, Materialabhängige Einsatzempfehlung	23 - 27
8.	Empfehlung beim Fräsen von rostbeständigen Stählen und Superlegierungen	27
9.	Belastungsfall und Schnittgeschwindigkeitsfaktor	28
10.	Schnittgeschwindigkeits- und Standzeitfaktoren	29 - 30
11.	Stabilitätsfaktor in Abhängigkeit der Auskraglänge	31
12.	Schnittbreiten abhängige Drehzahlerhöhung / Initialkontakt	32
13.	Optimierungen bei der Schlichtbearbeitung	33
14.	Oberflächengüten Vergleichstabelle	34
15.	Verschleißerkennung und Abhilfe	35
16.	Spanungsdicke h, mittlere Spandicke h _m	36 - 37
17.	Radiales Eingriffsverhältnis a _e /D	38
18.	Allgemeine Berechnungsformeln	39

Einteilung Planfrässysteme

Dynamisches Planfräsen wird durch spezielle Frässysteme ermöglicht, die bei gleicher Schnitttiefe einen um min. 25% bis 100% höheren Zahnvorschub als vergleichbare 45° Planfräser erzielen.

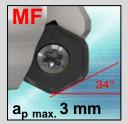

Höhere Produktivität durch kleineren Anstellwinkel bei gleicher Schneidenbelastung!

Systemvergleich:

Berechnungsbeispiel:

- > 16MnCr5
- > ap 3,0 mm
- Spanungsdicke

konv.Planfräsen

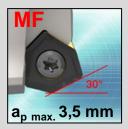

h = 0.28

$$f_z = 0.40 *$$

$$f_z = h / \sin(\kappa)$$

Zus. Merkmale der MF-Fräser:

Iscar H1200



$$h = 0.28$$

$$f_z = 0.50 250$$

- Fräsen an der Schulter
- Max. $f_7 = 0.80 \text{ mm}$
- · Enge Zahnteilung

Iscar H600

$$h = 0.28$$

$$f_z = 0.56 \, \text{M}^{\circ | \circ}$$

- Fräsen an der Schulter
- Max. $f_z = 0.80 \text{ mm}$
- Normale
 Zahnteilung

^{*} Max. f_z bei 45°-Planfräsern / Referenz

Die 3 Basis-Frässysteme

- Iscar's universelle und breitest ausgebaute Planfräs-Linie für den Einsatz von S-WSP (8-schneidig) und O-WSP (16-scheidig)
- Werkzeuge mit weiten, mittleren und engen Teilungen verfügbar
- 3 Systemgrößen (-13, -18, und -26) decken nahezu alle Anwendungsbereiche ab
- Für kleine Maschinen (-13) bis Großmaschinen (-26)

- Einzigartiges Konzept mit doppelseitiger WSP in axial positiver Einbaulage für einen weichen Schnitt
- Werkzeuge mit weiten und mittleren Teilungen verfügbar
- Verfügbar in 2 Systemgrößen (-05 und -07)
- Prädestiniert für problematische Werkstückstoffe, sowie gute Eignung als Schlichtfräser durch breite Wiperschneide
- Für kleine und mittlere Maschinen

K=34°

- Frässystem mit doppelseitiger 12-schneidiger WSP mit 34° Anstellwinkel für höhere Produktivität
- Werkzeuge ausschließlich mit mittlerer Zahnteilung
- Einsatz auf allen gängigen Maschinentypen

Übersicht der Frässysteme

Werkstückstoff:

Stahl, Gusseisen, Rostbeständiger Stahl

Einsatzgebiete:

Allgemeiner Maschinenbau, Automobil-Komponenten, Großteile, Heavy Industrie, Energieerzeugung

Werkstückstoff:

Stahl, Gusseisen, Rostbeständiger Stahl

Einsatzgebiete:

Allgemeiner Maschinenbau, Großteile

Werkstückstoff:

Gusseisen, Stahl

Einsatzgebiete:

Allgemeiner Maschinenbau, Automobilindustrie, Zulieferer

Haupteinsatzgebiete

Übersicht der Frässysteme

Werkstückstoff:

Stahl, Gusseisen, Rostbeständiger Stahl, NE-Metalle

Einsatzgebiete:

Allgemeiner Maschinenbau, Automobilindustrie, Öl und Gas, Heavy Industrie, Energieerzeugung

Werkstückstoff:

Gusseisen, Stahl, Rostbeständiger Stahl < ap2mm

Einsatzgebiete:

Serienfertigung, Automobil-Komponenten

HELITANG-T465

Werkstückstoff:

Gusseisen, Stahl, (Rostbeständiger Stahl)

Einsatzgebiete:

Großteile-Fertigung

Haupteinsatzgebiete

Übersicht der Frässysteme

HELIOCTO -HOF

Werkstückstoff:

Stahl, Rostbeständiger Stahl, Gusseisen, Aluminium, NE-Metalle, Titan

Einsatzgebiete:

Allgemeiner Maschinenbau, Luft- u. Raumfahrt, Die & Mold, Energieerzeugung

Werkstückstoff:

Stahl, Rostbeständiger Stahl

Einsatzgebiete:

Allgemeiner Maschinenbau, Luft- u. Raumfahrt, Zulieferer, K=34° Öl und Gas, Heavy Industrie, Energieerzeugung

N=34

-H<mark>600</mark> MF Linie

Werkstückstoff:

dynamisches Planfräsen

K=30°

Einsatzgebiete:

Luft- u. Raumfahrt, Öl und Gas, allgem. Maschinenbau, Power Generation

einsatzgebiete

Haupt-

Ø16-160

 $a_{p \text{ max.}} 3,5$

Übersicht der Frässysteme

Werkstückstoff:

Stahl, Rostbeständiger Stähle, Super Legierungen

Einsatzgebiete:

Werkzeug- und Formenbau, allgem. Maschinenbau, Luftu. Raumfahrt, Öl und Gas

Werkstückstoff:

Rostbeständiger Stähle, Super Legierungen, Stahl

Einsatzgebiete:

Luft- u. Raumfahrt, Öl und Gas, Werkzeug- und Formenbau, allgem. Maschinenbau

Haupteinsatzgebiete

Vorschub Empfehlungen

	Werkstücksto	off Be	reich:		P			K Cast Iron			Stainless Steel			Super Alloy		48 HR	Hardened Mat.	55 HRc	N Ion Ferrous Mat.	
Beanspr	uchung lt. S27 (<mark>L</mark> eicht; <u>M</u> itte	el; <u>S</u> ch	wer):	L	$(\widetilde{\mathbf{M}})$	$\langle S \rangle$		$(\widetilde{\mathbf{M}})$	$\langle S \rangle$		$\widetilde{\mathbf{M}}$	$\langle \hat{\mathbf{c}} \rangle$		$\widetilde{\mathbf{M}}$	$\langle \tilde{\mathbf{S}} \rangle$		$(\widetilde{\mathbf{M}})$	$\langle \tilde{\mathbf{S}} \rangle$	$(\widetilde{\mathbf{M}})$	$\langle \mathbf{S} \rangle$
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvoi	rschul	b f _z fi	ür Sch	nittbı	reite	a _e /D	≥ 40-8	30%			
	S845 SNMU 1305ANTR			0,21 - 0,3	0,19 - 0,26		0,3 - 0,42	0,25 - 0,35	0,19 - 0,26											
	S845 SN <u>H</u> U 1305ANTR	-		0,17 - 0,22			0,24 -	0,2 -												
	S845 SNMU 1305ANR-MM	_	_	0,22	0,25 -	0,19 - 0,3	0,31	0,20												
	S845 SNHU 1305ANR-MM	6,0	4,8	0,2 -	0,4	0,5				0,17 -				0,13 -	100	0,12 -				
	S845 SNMU 1305ANR-RM			0,4	0,35		0,24 -		0,15 -	0,3	0,26	0,23		0,23	0,19	0,21	0,18			
	S845 SNHU 1305ANR-PL			0,18 -	0,36		0,48	0,4	0,3	0,18 -	0,15 -		0,15 -	0,12 -						
~	_	0.5		0,26	f., r. c			£ F. C		0,26	0,22		0,18	0,13						
13	S845 SN <u>H</u> U 1305AN-N- <u>W</u>	0,5		max	fu 5,6		max.	fu 5,6												
(-R13)	ON <u>M</u> U 050505-TN			0,21 - 0,3	0,19 - 0,26		0,3 - 0,42	0,25 - 0,35	0,19 - 0,26											
(0	ONHU 050505-TN			0,17 -	0,15 -		0,24 -	0,2 -	0,26											
<i>HeliDo</i> 45 8/16	_			0,22	0,2 0,25 -	0,19 -	0,31	0,26												
<i>He</i>	ONMU 050505-TN-MM	3,5	2,8		0,4	0,3														
(E)	ON <u>H</u> U 050505-TN-MM	m	7	0,2 -	0,2 - 0,35					0,17 - 0,3	0,14 - 0,26	0,12 - 0,23		0,13 - 0,23	0,11 - 0,19	0,12 - 0,21				
He. SOF(E)45	ON <u>H</u> U 050500- <mark>PL</mark>			0,18 - 0,24						0,18 - 0,24			0,15 - 0,16							
S	ON <u>H</u> U 050500-R-PH						0,24 - 0,32	0,2 - 0,27												
	ON <u>H</u> U 0505AN-R- <u>W</u>	ь		max	fu 3,2			fu 3,2												
	ON <u>H</u> U 0505AN-8R- <u>W</u>	0,5		max	fu 5,6		max.	fu 5,6												
	OXMT 050705-R-HP	2,7	2,2	0,15 -						0,13 -			0,1-						 Finant	la a r
	OXMT 0507R08-FF	1,2	1,0	0,35 0,5 -	0,3 0,5 -	0,38 - 1,17				0,26	0,23		0,18	0,15					 Einsatz	
	RXMT 1607-N (h _m beachten!)			1,79 0,15 - 0,4	1,56 0,15 - 0,35	0,11 - 0,26				0,13 - 0,3	0,11 - 0,26		0,1 - 0,21	0,08 - 0,18					- B- C.110	
	RXMT 1607-NPL (h _m beachten!)	8,0	6,4	0,4 0,12 - 0.29		0,20				0,1 - 0,21	0,26 0,08 - 0.19		0,21 0,08 - 0,15),12 - 0,25

Vorschub Empfehlungen

	Werkstücks	toff Bei	eich:		P			K Cast Iron		(Stainless Steel	,)	(Super Alloy		48 HRc	Hardenee Mat.	55HR	С	Non Ferrous Mat.	
Beanspr	uchung lt. S27 (<u>L</u> eicht; <u>M</u> it	tel; <u>S</u> ch	wer):	L	M	$\langle \tilde{\mathbf{S}} \rangle$		(M)	$\langle \hat{\mathbf{c}} \rangle$		(M)	S		M	$\langle \widetilde{\omega} \rangle$		(M)	(S)		$(\widetilde{\mathbf{M}})$	$\langle \hat{\mathbf{c}} \rangle$
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvor	schuk	o f _z fü	ir Schr	nittbr	eite	a _e /D ≥	40-8	0%				
	SNMU 1806ANR			0,21 - 0,38	0,19 - 0,34		0,3 - 0,54	0,25 - 0,45	0,19 - 0,34												
	SN <u>H</u> U 1806ANR			0,17 - 0,34	0,15 - 0,3		0,24 -	0,2 - 0,4													
	SNMU 1806ANR-MM	8,0	6,4		0,3 - 0,45	0,23 - 0,34															
	SN <u>H</u> U 1806ANR-MM		9	0,25 - 0,46	0,25 - 0,4					0,21 - 0,34	0,18 - 0,3	0,15 - 0,26		0,16 - 0,26	0,14 - 0,22	0,15 - 0,24	0,13 - 0,2				
~	SNMU 1806ANR-RM				0,23 - 0,41		0,36 - 0,66	0,3 - 0,55	0,23 - 0,41												
<mark>}0</mark>	SN <u>H</u> U 1806ANR- <u>W</u>	0,5		max.	fu 7,0			fu 7,0	Í												
<i>HeliDo</i> OF45-R18				0,21 -	0,19 -		0,3 -	0,25 -	0,19 -												
SO	ON <u>M</u> U 070610-TR			0,38	0,34 0,15 -		0,54	0,45 0,2 -	0,34 0,15 -												
	ON <u>H</u> U 070610-TR/L			0,34	0,3		0,24	0,2	0,13												
	ONMU 070610-TR-MM	5,0	4,0		0,3 - 0,45	0,23 - 0,34															
	ON <u>H</u> U 070610-TR-MM		4	0,25 - 0,46	0,25 - 0,4					0,21 - 0,34	0,18 - 0,32			0,16 - 0,26	0,14 - 0,22	0,15 - 0,24	0,13 - 0,2				
	ON <u>M</u> U 070610-TR-RM			0,26 - 0,47	0,23 - 0,41		0,36 - 0,66	0,3 - 0,55	0,23 - 0,41												
	ON <u>H</u> U 070610-AN-R- <u>W</u>	0,5		max.	fu 4,8		max.	fu 4,8													
	S845 SN <u>M</u> U 2608ANR-RM	0,	∞		0,25 - 0,45	0,19 - 0,34					0,18 - 0,36	0,15 - 0,29									
<mark>)0</mark> -R26	S845 SN <u>M</u> U 2608ANR-HL	11,0	8,8				0,3 - 0,6	0,25 - 0,5	0,19 - 0,38												
<i>Heli<mark>Do</mark></i> SOF45-R26	ONIMIL 10001C N. DA				0,25 -	0,19 -					0,18 -	0,15 -									
SC	ONMU 100816-N-RM	2,0	2,6		0,45	0,34	0,3 -	0,25 -	0,19 -		0,36	0,29							emp	f. Einsa	atzbere
	ONMU 100816-N-HL						0,6	0,5	0,38										_		insetzb

Vorschub Empfehlungen

	Werkstückst	off Be	reich:		P		ı	K Cast Iron		(Stainless Steel	3		S Super Alloy		48 HR	Hardened Mat.	55 HRc	(Non Ferro	
Beanspr	uchung lt. S27 (<u>L</u> eicht; <u>M</u> itt	el; <u>S</u> ch	wer):	L	(M)	$\langle \tilde{\mathbf{S}} \rangle$	L	$(\widetilde{\mathbf{M}})$	\widetilde{S}	L	M	$\langle \tilde{\mathbf{S}} \rangle$		$(\widetilde{\mathbf{M}})$	$(\tilde{\mathbf{S}})$	L	(M)	$(\widetilde{\mathbf{S}})$	L	$\widetilde{\mathbf{M}}$	$)$ $(\widetilde{\mathbf{S}})$
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvor	schul	o f _z fi	ür Sch	nittbr	eite a	a _e /D	≥ 40-8	30%				
9	S845 SX <u>M</u> U 1606ADTR-MM			0,3 - 0,52	0,3 - 0,45	0,23 - 0,34	0,36 - 0,6	0,3 - 0,5			0,21 - 0,36	0,18 - 0,29				0,18 - 0,27	0,15 - 0,23				
Heli <mark>Do</mark> S845-R16	S845 SX <u>M</u> U 1606ADTR-RM	7,1	5,7					0,3 - 0,55	0,23 - 0,41												
HeliDo 845-R1	S845 SX <u>C</u> U 160608AD-RMM			0,24 - 0,36	0,2 - 0,3					0,24 - 0,36	0,2 - 0,3		0,2 - 0,24	0,16 - 0,18							
_ \(\oldots \)	S845 SX <u>H</u> U 1606AD-R- <u>W</u>	0,5		max.	fu 7,0		max.	fu 7,0		max. fu 7,0											
-R13	S865 SN <u>M</u> U 1305ZNTR	8,0	6,4	0,13 - 0,24			0,18 - 0,34	0,15 - 0,28	0,11 - 0,21												
<i>HeliDo</i> S865-R1	S865 SNMU 1305ZNTR-MM	ω,	9	0,15 - 0,29	0,15 - 0,25	0,11 - 0,19				0,13 - 0,21	0,11 - 0,2										
	IQ845 SY <u>H</u> U 0503ADN-ML			0,1 - 0,22						0,1 - 0,22	0,08 - 0,18		0,08 -								
	IQ845 SY <u>H</u> U 0503ADN-MM	2,6	2,1	0,08 - 0,25	0,08 - 0,22					0,07 - 0,19	0,06 - 0,18		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
_	IQ845 SY <u>H</u> U 0503ADTN			0,07 - 0,19			0,1 - 0,26	0,08 - 0,22													
<i>DovelQMill</i> IQ845-R05 /-R07	IQ845 SY <u>H</u> U 0704ADN			0,12 - 0,25						0,12 - 0,23	0,1 - 0,21		0,1 - 0,17								
<i>DoveIQMill</i> 845-R05 /-F	IQ845 SY <u>H</u> U 070400ADN			0,12 - 0,25						0,12 - 0,23			0,17 0,17 0,17								
<i>vel</i> (5-R(IQ845 SY <u>H</u> U 0704ADN-MM			0,15 - 0,32	0,15 - 0,28	0,11 - 0,21				0,14 - 0,25	0,11 - 0,24										
Do 284	IQ845 SY <u>H</u> U 070400N-MM	4,6	3,7	0,15 - 0,32	0,15 - 0,28	0,11 - 0,21				0,14 - 0,25	0,11 - 0,24		0,11 - 0,2								
2	IQ845 SY <u>H</u> U 0704ADTN			0,13 - 0,26			0,18 - 0,36	0,15 - 0,3	0,11 - 0,23												atzbe einsetz
	IQ845 SY <u>H</u> U 070400ADTN			0,13 - 0,26			0,18 - 0,36	0,15 - 0,3	0,11 - 0,23										Deal	ingt (-misetz
	IQ845 SY <u>H</u> U 0704ADN-P																		0,2 - 0,33	0,15 0,2	

Vorschub Empfehlungen

	Werkstücks	stoff Be	reich:		P			K Cast Iron			Stainless Steel			S Super Alloy		48 HRc	Hardened Mat.	55HRc	N	on Ferrous Mat.	
Beanspr	uchung lt. S27 (<u>L</u> eicht; <u>M</u> it	tel; <u>S</u> ch	wer):		(M)	$\langle \mathbf{S} \rangle$	L	$(\widetilde{\mathbf{M}})$	$\langle \tilde{\mathbf{S}} \rangle$	L	$(\widetilde{\mathbf{M}})$	$(\widetilde{\mathbf{S}})$		$(\widetilde{\mathbf{M}})$	(\tilde{S})		$(\widetilde{\mathbf{M}})$	$\widetilde{\mathbf{S}}$		$(\widetilde{\mathbf{M}})$	\widetilde{S}
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvor	schul	o f _z fi	ür Sch	nittbr	eite a	a _e /D 2	≥ 40-8	0%				
	ON <u>M</u> U 080608-TN			0,21 - 0,34	0,19 - 0,3			0,25 - 0,4	0,19 - 0,3				İ								
	ON <u>H</u> U 080608-TN		-	0,21 -	0,19 - 0,26		0,3 - 0,42	0,25 - 0,35	0,5												
	ONMU 080608-TN-MM		-	0,3 -	0,3 -		0,42	0,33			0,21 -										
	ONHU 080608-TN-MM			0,48 0,25 -	0,42 0,25 -		0,3 -	0,25 -		0,21 -											
80	ONHU 080608 AN-N-HP	5,5	4,4	0,4	0,35		0,42	0,35		0,3 0,14 -			0,12 -								
16 <i>DoMill</i> F45NM-R08	ONMU 080608 AN-N-HP	- 2	4	0,31 0,18 -	0,15 -					0,31 0,18 -	0,26 0,15 -		0,21 0,15 -	0,16 0,12 -							
N N	_			0,36	0,3		0,24 -	0,2 -		0,36	0,3		0,24	0,18							
16 45	ON <u>H</u> U 080600-N-PL						0,42	0,35 0,3 -	0,23 -							0,18 -	0,15 -				
ш	ONMU 080612-HL							0,5	0,38							0,18 -	0,15				
	ON <u>H</u> Q 0806-TN IS8						0,36 - 0,6	0,3 - 0,5	0,23 - 0,38												
	ON <u>H</u> U 0806AN-N- <u>W</u>			max.	fu 5,0		max.	fu 5,0													
	ON <u>H</u> U 0806AN-R- <u>W</u>	0,5		max.	fu 5,0		max.	fu 5,0													
	ON <u>H</u> U 0806 <mark>AN-14</mark> R- <u>W</u>			max.	fu 9,2		max.	fu 9,2													
	OE <u>C</u> R 060405AER			0,12 - 0,25	0,12 - 0,22		0,16 - 0,29			0,1 - 0,19			0,08 - 0,15								
	OE <u>C</u> R 060405AER-P			0,08 -	0,22		0,23			0,13			0,05 - 0,13						0,13 -	0,1-	0,08 -
to 06	OEMT 060405AER-76	2,5	2,0	0,12 -	0,12 -	0,09 -	0,18-			0,1-	0,08 -		0,13			0,07 -			0,33	0,25	0,2
<i>HeliOcto</i> HOF-06	OEMW 060405-AETN			0,25	0,22 0,12 - 0,22	0,17 0,09 - 0,17	0,36 0,18 - 0,42	0,3 0,15 - 0,35	0,23	0,19	0,18 0,08 - 0,18					0,13 0,07 - 0,13	0,06 - 0,11				
H H	SEMT 140405ATR			0,12 -	0,12 -	0,09 -	0,18 -	0,15 -	0,11 -		0,08 -					0,13	V,22		empf.	Einsa	tzber
	SECT 140420ATR	5,5	4,4	0,29 0,1 - 0,24	0,25	0,19	0,36	0,3	0,23	0,1 - 0,24	0,2 0,08 - 0,2		0,08 - 0,16	0,06 - 0,12						ngt eir	

Vorschub Empfehlungen

	Werkstücksto	off Bei	reich:		P			K Cast Iron			Stainless Steel)		S Super Alloy		48 HRc	Hardenec Mat.	55HRc		N on Ferrous Mat.)
Beanspr	uchung lt. S27 (<u>L</u> eicht; <u>M</u> itte	el; <u>S</u> ch	wer):	L	M	(\tilde{S})		M	$\langle \mathbf{S} \rangle$	L	M	$(\tilde{\mathbf{S}})$		(M)	$\langle \mathbf{S} \rangle$	L	M	(\tilde{S})		$(\widetilde{\mathbf{M}})$	(\tilde{S})
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvoi	schul	o f _z fü	r Sch	nittbr	eite a	_e /D≥	40-8					
Б	REMT 1505-LM-76 (h _m beacht!)	0	4	0,12 - 0,29	0,12 - 0,25	0,09 - 0,19	0,16 - 0,33			0,1 - 0,21	0,08 - 0,2		0,08 - 0,18			0,07 - 0,15					
HOF-	REMW 1505 (h _m beachten!)	8,0	6,		0,15 - 0,3	0,11 - 0,23	0,2 - 0,39			0,13 - 0,26	0,11 - 0,24		0,11 - 0,21								
	OF <u>C</u> R 07T3-AEN			0,12 -			0,1 - 0,2			0,12 - 0,24			0,1 - 0,16						0,15 - 0.36		
	OF <u>C</u> R 07T3-AEN-P	-		0,24			0,2			0,24	0,2		0,16						0,13 - 0,39	0,1 - 0,3	0,08 - 0,24
	OFCT 07T3-AER			0,1 - 0,17	0,1 - 0,15		0,12 - 0,24	0,1 - 0,2		0,09 - 0,13	0,07 - 0,12		0,07 - 0,11						0,33	0,5	0,24
	OFMT 07T3-AEN	4,6	3,7	0,15 - 0,25	0,15 - 0,22		0,2 - 0,29			0,13 - 0,19			0,11 - 0,15								
	OFMT 07T3-AETN			0,2 - 0,35	0,2 - 0,3	0,15 - 0,23	0,24 - 0,46	0,2 - 0,38	0,15 - 0,29												
	OFMW 07T3-AETN				0,2 - 0,35	0,15 - 0,26		0,2 - 0,4	0,15 - 0,3							0,12 - 0,24	0,1 - 0,2				
to 37	OF <u>C</u> T 07T3 AETN-16			0,15 - 0,29	0,15 - 0,25	0,11 - 0,19	0,18 - 0,3	0,18 - 0,3		0,13 - 0,21	0,11 - 0,2					0,09 - 0,15	0,06 - 0,1				
HeliOcto HOF-07	OFMT 07T3-AER-76	3,4	ó	0,15 - 0,29	0,15 - 0,25	0,11 - 0,19	0,2 - 0,33	0,15 - 0,25		0,13 - 0,21	0,11 - 0,2					0,09 - 0,15					
He	OFMT 0706-AER-76	m`	m	0,2 - 0,4	0,2 - 0,35	0,15 - 0,26	0,26 - 0,46	0,2 - 0,35		0,17 - 0,3	0,14 - 0,28					0,12 - 0,21					
	OF <u>C</u> R 07T3-R <u>W</u> -P									max.	fu 4,7		max.	fu 4,7					n	nax. fu 4	,7
	OF <u>C</u> T 07T3-R <u>W</u> -16	0,5		max.	fu 4,7		max.	fu 4,7													
	OF <u>C</u> T 07T3-AER			max.	fu 5,0		max.	fu 5,0													
	OFMW 0706R10-FF	2,2	1,8	0,4 - 1,38	0,4 - 1,2	0,3 - 0,9	0,6 - 1,8	0,5 - 1,5	0,38 - 1,13	0,34 - 1,02	0,28 - 0,96										
	RFMT 1905-LM-76 (h _m beacht!)	5	هٰر	0,15 - 0,35	0,15 - 0,3	0,11 - 0,23	0,2 - 0,39			0,13 - 0,26	0,11 - 0,24		0,11 - 0,21			0,09 - 0,18			empf.	Einsa	tzber
	RFMW 1905 (h _m beachten!)	9,5	7,		0,2 -	0,15 - 0,3	0,26 - 0,52			0,17 - 0,34	0,14 - 0,32		0,14 - 0,28			,,_,				ngt eir	

Vorschub Empfehlungen

	Werkstückst	toff Bei	reich:		P			K Cast Iron			Stainless Steel			S Super Alloy		48 HRc	Hardened Mat.	55 HRc	(Non Ferrous Mat.)
Beanspr	uchung lt. S27 (<u>L</u> eicht; <u>M</u> itt	el; <u>S</u> ch	wer):	L	(\mathbf{M})	$\langle S \rangle$	L	(\mathbf{M})	$\langle \mathbf{S} \rangle$	L	M	(S)		$\widetilde{\mathbf{M}}$	$\langle S \rangle$	L	$\widetilde{\mathbf{M}}$	$\langle \widetilde{\omega} \rangle$		(M)	(S)
System:	WSP-Type:	ap max.:	ap (80%):					Za	hnvor	schul	f _z fi	ir Sch	nittbı	reite	a _e /D ≥	≥ 40-8	0%				
g ST	T465 LN <u>H</u> T 2212-ZN-R			0,18 - 0,42	0,15 - 0,35						0,15 - 0,35	0,09 - 0,23									
HeliTang T465-22S1	T465 LN <u>H</u> T 2212-ZNTR/L	19,0	15,2		0,23 - 0,45	0,2 - 0,39	0,36 - 0,72	0,3 - 0,6	0,23 - 0,45												
<i>Не</i> Т46	T465 LNMT 2212ZNTR-CS				0,25 - 0,4	0,19 - 0,3	0,33 - 0,52	0,25 - 0,4													
60	H1200 HX <u>C</u> U 0606-HPR		the state of the	0,12 - 0,42	0,1 - 0,35					0,12 - 0,42	0,1 - 0,35		0,1 - 0,28	0,08 - 0,21							
HeliDo H1200	H1200 HX <u>C</u> U 0606-TR	3,0	2,4		0,25 - 0,6	0,19 - 0,45	0,3 - 0,78	0,25 - 0,65			0,18 - 0,48										
	H600 WX <u>C</u> U 040310-HP	ь	7	0,2 - 0,4						0,2 - 0,4	0,18 - 0,32		0,18 - 0,36								
	H600 WX <u>C</u> U 040310-T	1,5	1,2		0,3 - 0,6	0,26 - 0,48	0,39 - 0,72	0,33 - 0,66	0,27 - 0,54			0,26 - 0,42									
(30°)	H600 WX <u>C</u> U 05T312-HP	2,0	1,6	0,3 - 0,5						0,3 - 0,5	0,27 - 0,4	0,26 - 0,35	0,27 - 0,45								
0 F (3)	H600 WX <u>C</u> U 05T312-T	7	ť		0,4 -	0,34 - 0,56	0,52 - 0,84	0,44 - 0,77	0,36 - 0,63			0,34 - 0,49				0,2 - 0,35	0,16 - 0,28				
HeliDo 0 MF	H600 WX <u>C</u> U 070512-HP	2,5	2,0	0,3 - 0,6						0,3 - 0,6	0,27 - 0,48	0,26 - 0,42	0,27 - 0,54	0,24 - 0,42	0,18 - 0,3						
Н Н	H600 WX <u>C</u> U 070515-T	2,	2		0,4 - 0,8	0,34 - 0,64	0,52 - 0,96	0,44 - 0,88	0,36 - 0,72			0,34 - 0,56				0,2 - 0,4	0,16 - 0,32				
Ĭ	H600 WX <u>C</u> U 080612-HP			0,3 - 0,6						0,3 - 0,6	0,27 - 0,48	0,26 - 0,42	0,27 - 0,54								
	H600 WX <u>C</u> U 080612-T	3,5	2,8		0,4 - 0,8	0,34 - 0,64	0,52 - 0,96	0,44 - 0,88	0,36 - 0,72			0,34 - 0,56				0,2 - 0,4	0,16 - 0,32				
	H600 WX <u>C</u> U 080616-RM				0,4 - 0,8	0,34 - 0,64	0,52 - 1,04	0,48 - 0,96	0,36 - 0,8							0,24 - 0,52	0,2 - 0,4			. Einsa ngt eir	tzbere

Vorschub Empfehlungen

	Werkstücks	stoff Be	reich:		P			K Cast Iron			Stainless Steel			Super Alloy		48 HRc	Hardened Mat.		Non Ferrous Mat.
Beanspru	uchung lt. S27 (<u>L</u> eicht; <u>M</u> it	tel; <u>S</u> ch	wer):	L	M	$\langle \mathbf{S} \rangle$		M	(\tilde{S})	L	M	(\tilde{S})	L	M	$\langle S \rangle$	L	\widetilde{M} \widetilde{S}	} (M S
System:	WSP-Type:	ap max.:	ap (80%):				Z	ahnv	orscl	ոսb f	, für	Sch	nittb	reite	a _e /[) ≥ 5(0-100%	ě ě	
	H600 WX <u>C</u> U 040310-HP	∞	7	0,3 - 0,7						0,3 - 0,7	0,27 - 0,56	0,26 - 0,49	0,27 - 0,63		0,18 - 0,35				
	H600 WX <u>C</u> U 040310-T	8,0	0,7		0,5 - 1	0,43 - 0,8	0,65 - 1,2	0,55 - 1,1	0,45 - 0,9			0,43 - 0,7							
()	H600 WX <u>C</u> U 05T312-HP		x	0,4 -						0,4 -	0,36 - 0,64	0,34 - 0,56	0,36 - 0,72	0,32 - 0,56	0,24 - 0,4				
17	H600 WX <u>C</u> U 05T312-T	1,0	8′0	0,0	0,6 - 1,2	0,51 - 0,96	0,78 - 1,44	0,66 - 1,32	0,54 - 1,08	0,0	0,04	0,51 - 0,84	0,72	0,50	0,4	0,3 - 0,6	0,24 - 0,48		
HeliDo 10 FF (H600 WX <u>C</u> U 070512-HP	10	7	0,5 - 1						0,5 - 1	0,45 - 0,8	0,43 - 0,7	0,45 -	0,4 - 0,7	0,3 - 0,5				
<i>Н</i> еоо	H600 WX <u>C</u> U 070515-T	1,5	1,2		0,7 - 1,4	0,6 - 1,12	0,91 - 1,68	0,77 - 1,54	0,63 - 1,26			0,6 - 0,98				0,35 - 0,7	0,28 - 0,56		
	H600 WX <u>C</u> U 080612-HP			0,5 - 1						0,5 - 1	0,45 - 0,8	0,43 - 0,7	0,45 - 0,9	0,4 - 0,7	0,3 - 0,5				
	H600 WX <u>C</u> U 080612-T	2,0	1,6		0,7 - 1,4	0,6 - 1,12	0,91 - 1,68	0,77 - 1,54	0,63 - 1,26			0,6 - 0,98				0,35 - 0,7	0,28 - 0,56		
	H600 WX <u>C</u> U 080616-RM				0,7 - 1,4	0,6 - 1,12	0,91 - 1,82	0,84 - 1,68	0,63 - 1,4							0,42 - 0,91	0,35 - 0,7		
Mill 24	FFQ4 SOMT 1205-HP	10	2,	0,5 - 1,5						0,5 - 1,5	0,45 - 1,35	0,45 - 1,2	0,4 - 1,05	0,4 - 0,9	0,35 - 0,75	hi	s 50 HRc		
FeedMill FFQ4	FFQ4 SOMT 1205-T	1,5	1,		0,8 - 2	0,68 - 1,6						0,64 - 1,4				0,4 - 0,6	0,4 - 0,5		. Einsatzber

Wenn $a_e/D < 40\%$ bitte den entsprechenden f_z über diese Formel bestimmen!

$$f_{z \text{ (ae/D<40\%)}} = f_{z \text{ (It. Tab.)}} \bullet 0,7 \bullet \sqrt{\frac{D}{a_e}} \text{ (mm)}$$

Gilt nur für Planfräswerkzeuge, nicht bei Hochvorschubwkz.!

K ≥ 30°

Schneiden-Geometrie Zuordnung **User Guide**

WSP Schneiden-Geometrie Zuordnung

System:	Тур:	Geometrie- Bezeichnungen:	Eigenschaften:
		ANR-MM, TN-MM, TR-MM	Negative stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
		ANTR, ANR, TN, TL, TR,	Positive Schutzfase verhindert Ausbrüche am Wkst. Allgem. Spanformer zur Gussbearbeitung
	S845 SNM(H)U	13ANR-RM, ANR-HL, N-HL	
Heli <mark>Do</mark>	ONM(H)U	ANR-PL , PL, R-HP	Hoch positiv, für Edelstähle und Super Alloys
		ANR-RM, N-RM	Negative Schutzfase, sehr stabiler Spanformer für die Stahlbearbeitung (Schwerzerspanung)
		AN-N-W, AN-R-W, AN-8R-W	Breitschlicht-Spanformer zum Schlichten mit hohem Umdrehungsvorschub in Guss und Stahl
		ADTR-MM	Negative stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
u-lin-	S845 SXM(C)U	ADTR-RM	Negative Schutzfase, sehr stabiler Spanformer für die Guss- und Sphärogussbearbeitung
Heli <mark>Do</mark>	S845 SXHU	AD-RMM	Hoch positiv, für Edelstähle und Super Alloys
		AD-R-W	Breitschlicht-Spanformer zum Schlichten mit hohem Umdrehungsvorschub in Guss und Stahl
		тм-мм	Negative stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
		TN	Positive Schutzfase verhindert Ausbrüche am Wkst. Allgem. Spanformer zur Gussbearbeitung
CDeNAIL	ONM(H)U	AN-N-HP	Positive Schneide für rostfreien Stahl und hoch hitzebeständige Legierungen
6DoMill	ONHQ	N-PL	Positive, scharfe Schneide für die Bearbeitung von Gusseisen
		HL	Breite Schutzfase, sehr stabiler Spanformer für die Gussbearbeitung (Schwerzerspanung)
		AN-N-W, AN-R-W, AN-14R-V	Breitschlicht-Spanformer zum Schlichten mit hohem Umdrehungsvorschub in Guss und Stahl
Heli <mark>Do</mark>	\$865 SNMU	ZNTR	Positive Schutzfase verhindert Ausbrüche am Wkst. Allgem. Spanformer zur Gussbearbeitung

User Guide Schneiden-Geometrie Zuordnung

WSP Schneiden-Geometrie Zuordnung

System:	Тур:	Geometrie- Bezeichnungen:	Eigenschaften:
		ZNTR, ZNTL	Stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
HeliTang	T465 LNM(H)T	ZNTR-CS	Stabile Schutzfase, mit Spanteiler zur Verringerung der Schnittkräfte und Vibrationen
		ZN-R	Positive Schneide für rostfreien Stahl und hoch hitzebeständige Legierungen
		ADN-MM	Negative stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
Davis		ADTN	Positive Schutzfase verhindert Ausbrüche am Wkst. Allgem. Spanformer zur Gussbearbeitung
Dove	IQ845 SYHU	ADN, ADN-ML	Positive Schneide für austenitischen, rostfreien Stahl und hoch hitzebeständige Legierungen
IQMill		ADN-P	Positive, polierte, scharfe Schneide zu Bearbeitung von NE-Metallen und Aluminium
		00-AD	Übergangsfase von Haupt- zur Nebenschneide. Optimal zum Schlichtfräsen mit ap < 0,3 mm
	OEM(C)T	AER-76, ATR, LM-76	Spanformer -76 mit stabiler Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
	OFCR	AEN, AER	Scharfe Schneide, für die Bearbeitung von rostfreiem Stahl und hoch hitzebest. Legierungen
	OFMW	AETN	Negative Schutzfase, sehr stabil für die Bearbeitung von Stahl und Gusseisen (Schwerzerspan.)
UaliOata	OEMT(W)	AETN-16	Negative Schutzfase, für gehärteten Stahl und Werkzeugstahl
HeliOcto	OECR	AEN-P	Positive, polierte, scharfe Schneide zu Bearbeitung von NE-Metallen und Aluminium
	SEMT	FF	Hochvorschub Geometrie zum Einsatz in Stahl, Gusseisen und rostfreien Stahl
	REMT(W)	RW-P, RW-16	Breitschlicht-Spanformer zum Schlichten mit hohem Umdrehungsvorschub in Guss, Stahl, VA
	_ T	REMW ohne SpanfBez.	Negative Schutzfase, sehr stabil für die Bearbeitung von Stahl im unterbrochenen Schnitt

Schneiden-Geometrie Zuordnung **User Guide**

WSP Schneiden-Geometrie Zuordnung

System:	Тур:	Geometrie- Bezeichnungen:	Eigenschaften:
Heli <mark>Do</mark>	H1200 HXCU	TR	Stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
Пепро	111200 11/100	HPR	Positive Schneide für rostfreien Stahl und hoch hitzebeständige Legierungen
		Т	Stabile Schutzfase, zur allgemeinen Bearbeitung von Stahl und Gusseisen
Heli <mark>Do</mark>	H600 WXCU	HP	Positive Schneide für rostfreien Stahl und hoch hitzebeständige Legierungen
		RM	Verstärkte Schneidkante für unterbr. Schnitte und harte Werkstückstoffe
Faadha:II	FFOA CONAT	T	Stabile Schutzfase, zur Bearbeitung von Stahl und Gusseisen, ferrit. und maternsit., rostbes. Stahl
FeedMill	FFQ4 SOMT	НР	Positive Schneide für austenit., rostfreien Stahl und hoch hitzebeständige Legierungen

Schneidstoffübersicht

Schneidstoffsorten für Wendeschneidplatten

	Hartmetall			Versc	hleißfest	igkeit		
	Eigenschaften	+ 🗲						
Werk	stückstoff Bereiche				Zähigkeit	,		
P	unleg. / leg. Stahl	IC330	IC845	<u>IC830</u>	IC810	<u>IC808</u>	IC30N	IC5400
P	ferrit. / martensit. Stahl	IC330	IC845	IC830	<u>IC5500</u>	IC808		
M	rostbeständiger Stahl	IC840	IC882	<u>IC330</u>	IC830	IC5820	IC5400	IC808
K	Grauguss (GG)		IC830	IC808	IC810	<u>IC5100</u>	IS8/IS80	IB85
K	Kugelgraphitguss (GGG)			IC830	IC808	<u>IC810</u>	IC7150	
S	Superlegierungen / Titan	<u>IC882</u>	IC330	IC840	IC830	IC5820	<u>IC380</u>	IC808
N	nichteisen Metalle			IC28		<u>IC08</u>		
Н	gehärteter Stahl (≤55HRc)				IC810		<u>IC808</u>	IB55 *
		1. Wahl						* ≥ 55 HRc

Schnittgeschw.- Empfehlungen

Schneidstoffabhängige Schnittgeschwindigkeitsund Einsatzempfehlung (m/min)

Legende: Rote Linie: Trockenbearbeitung Blaue Linie: Nassbearbeitung Fette Schrift: empfohlener Startwert

WSP mit PVD-Beschichtungen und Cermet

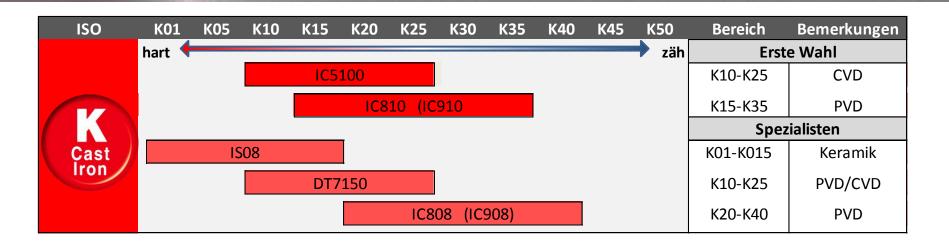
			IC330	IC380	IC845	IC840	IC830	IC882	IC810	IC808	IC30N
Wer	kstückstoff Bereiche		min. Start max.	min. Start max.	min. Start max.	min. Start max.	min. Start max.	min. Start max.	min. Start max.	min. Start max.	min. Start max.
P	unleg. / leg. Stah	1. Wahl	120 160 230	160 200 250	80 150 220		120 200 230		160 220 250	180 230 250	90 220 350
P	ferrit. / martensi	1. Wahl it. Stahl 2. Wahl	80 120 140		100 120 160		100 130 160			140 170 220	100 170 220
M	rostbest. Stahl Referenzen: 1.4301, v _c 200, tr 1.4404, v _c 90, nas:		60 100 160	120 160 220		90 120 160	6 <mark>0 140</mark> 200	70 100 140		120 160 220	
K	1.4462, v _c 80, nas Grauguss	1. Wahl					120 160 250		180 250 300		
K	Kugelgraphitguss	1. Wahl 2. Wahl					120 140 200		160 200 260	 160 180 250	
S	Superlegierunge	1. Wahl n / Titan 2. Wahl	30 40 100	30 50 100		25 40 90	30 40 100	20 40 60		30 50 100	
N	nichteisen Metal	1. Wahl									
н	gehärteter Stahl	1. Wahl (≤55HRc) 2. Wahl					40 80 120		60 100 150	80 120 200	50 100 140

Schnittgeschw.- Empfehlungen

Schneidstoffabhängige Schnittgeschwindigkeitsund Einsatzempfehlung (m/min)

Legende: Rote Linie: Trockenbearbeitung

Blaue Linie: Nassbearbeitung


Fette Schrift: empfohlener Startwert

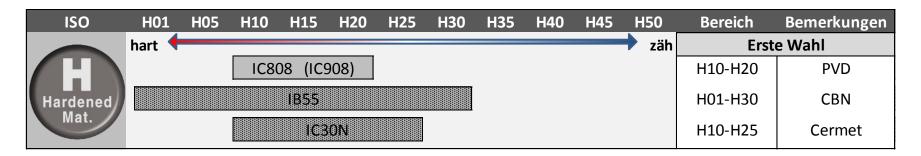
WSP mit CVD-Beschichtungen, Keramik, CBN und unbeschichtete

			IC5400	IC5500	IC5100	DT7150	IC5820	IS8/IS80	IB55/IB85	IC28	IC08
Wer	kstückstoff Bereiche		min. Start max.	min. Start max.	min. Start max.	min. Start max.					
Р	unleg. / leg. Stah	1. Wahl 1. Wahl 2. Wahl	160 200 250	90 200 280	180 250 320	100 160 250					
Р	ferrit. / martens	1. Wahl it. Stahl 2. Wahl	140 180 240	140 200 270							
M	rostbeständiger	1. Wahl Stahl 2. Wahl	100 130 180				100 120 160				
K	Grauguss	1. Wahl 2. Wahl			200 280 350	150 220 320		250 500 800	Rücksprache PM		
K	Kugelgraphitgus	1. Wahl S 2. Wahl	120 160 250			160 250 350		250 450 900			
S	Superlegierunge	1. Wahl n / Titan 2. Wahl					25 50 95				10 20 50
N	nichteisen Meta	1. Wahl lle 2. Wahl								160 450 650	350 750 1500
Н	gehärteter Stahl	1. Wahl (≤55HRc) 2. Wahl							Rücksprache PM		

ISO	P01	P05	P10	P15	P20	P25	P30	P35	P40	P45	P50	Bereich	Bemerkungen
	hart 💠										🔷 zäh	Erst	e Wahl
					IC 808	(IC908))					P15-P30	PVD
						IC5500						P15-P35	CVD
						IC83	30 (IC	928)				P20-P40	PVD
									IC845			P30-P50	PVD
Steel												Spez	ialisten
Old of			IC54	400								P05-P20	CVD
					IC30N							P10-P30	Zermet
					IC810	(IC910)						P15-P30	PVD
								IC330	(IC328)			P25-P50	PVD

		Beschreibung							
Erste	Wahl								
IC808	Schlichtbearbeitung und Schruppen unter stabilen Bedingungen								
IC5500	Ferritische und martensit. hochleg. Stähle (Gruppe 12 und 13), Hohe Schnittgeschw., Trockenbearbeitung								
IC830	Basisschneic	Basisschneidstoff für Erstversuch, Schruppbearbeitung, Trockenbearbeitung,							
IC845	Schruppbea	rbeitung bei hohen Vorschüben, unterbrochene Schnitte							
Spezi	alisten								
IC5400	Mittlere bis	hohe Schnittgeschwindigkeit, Trocken Bearbeitung							
IC30N	Zermet für d	ie Schlichtbearbeitung							
IC810	Verschleißbe	eständige Alternative für Werkzeugstähle (Gruppe 10 und 11)							
IC330	Schruppbea	rbeitung bei niedrigen bis mittleren Schnittgeschwindigkeiten, Nassbearbeitung							

	Beschreibung										
Erste Wahl											
IC5100 Im Grau	guss (GG) bei hohen Schnittgeschwindigkeit										
IC810 Erste Wa	hlim Kugelgraphitguss und im Grauguss bei niedrigen bis mittleren Schnittgeschwindigkeiten										
Spezialisten											
IS08 Graugus	s bei sehr hohen Schnittgeschwindigkeiten unter stabilen Bedingungen										
DT7150 Alternat	ve Allroundsorte für GG und GGG bei mittleren Schnittgeschwindigkeiten										
IC808 Schlichtk	earbeitung im Kugelgraphitguss (GGG) unter stabilen Bedingungen										


ISO	M01	M05	M10	M15	M20	M25	M30	M35	M40	M45	M50	Bereich	Bemerkungen	
	hart 🗲										→ zäh	Erst	e Wahl	
							IC840					M20-M40	PVD	
						IC8	30 (IC	928)				M25-M35	PVD	
M							IC3	30 (IC	328)			M30-M40	PVD	
Stainless)											Spezialisten		
Steel					IC8	08 (IC	908)					M20-M30	PVD	
						IC5	820					M20-M35	CVD	
								IC882				M25-M45	PVD	

	Beschreibung									
Erste	Wahl									
IC840	Höhere Tem	peraturbeständigkeit und resistenter gegen Kammrissbildung als IC830								
IC830	Allroundsor	te für austenitische Stähle								
IC330	Niedrige Schnittgeschwindigkeit und Nassbearbeitung									
Spez	ialisten									
IC808	Schlichtbear	beitung und mittlere Bearbeitung unter stabilen Bedingungen								
IC5820	Alternativsc	nneidstoff. Neue, hitzebeständige Sorte für die Trockenbearbeitug								
IC882	Alternativsc	nneidstoff. Neue, hitzebeständige Sorte für Austenite und Duplex Materialien								

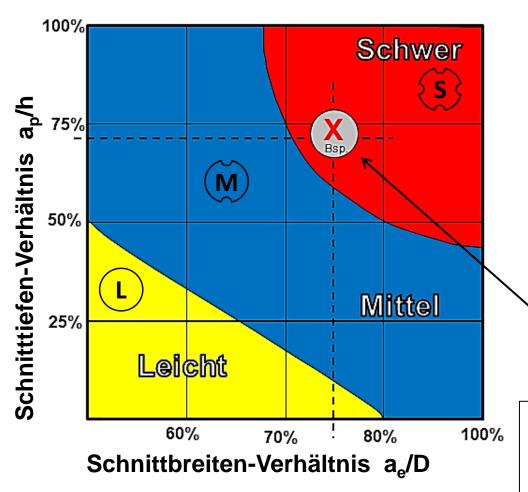
ISO	S01	S05	S10	S15	S20	S25	S30	S35	S40	S45	S50	Bereich	Bemerkungen
	hart 🕈										zäh	Erst	e Wahl
					IC808	(IC908)						S15-S30	PVD
							IC	340				S25-S40	PVD
S									IC882			S30-S50	PVD
Super)											Spez	ialisten
Alloy						IC380						S20-S30	PVD
						IC5	820					S20-S35	CVD
						IC83	30 (IC	928)				S20-S40	PVD
								IC3	30 (IC3	328)		S30-S50	PVD

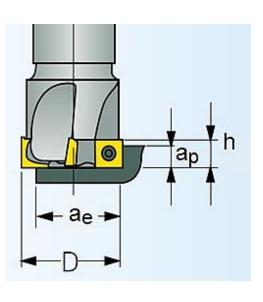
		Beschreibung						
Erste	Wahl							
IC808	Schlichtbearbeitung unter stabilen Bedingungen							
IC840	Allroundsorte für die Titanbearbeitung							
IC8882	Temperatur	beständiger Schneidstoff für die Bearbeitung von HTSA						
Spezi	alisten							
IC380	Schlichtbear	beitung von Titan unter labilen Verhältnissen, mit KSS Zufuhr						
IC5850	Alternativsc	hneidstoff						
IC830	Alternativsc	hneidstoff						
IC330	Alternativsc	hneidstoff mit hoher Resistenz gegen Kammrissbildung (ungenügende KSS Zufuhr)						

Beschreibung							
Erste Wahl							
IC808 Gehärtete S	tähle bis 55HRc unter stabilen Verhältnissen.						
IB55 Für die Finis	h Bearbeitung gehärteter Stähle bis 65 HRc						
IC30N							

Empfehlung beim Fräsen von rostbeständigen Stählen u. Superlegierungen

- Bei rostbeständigen Stählen sind geschliffene WSP zu bevorzugen.
- Die max. Spandicke (doppelter h_m-Wert < max. f_z Empfehlung) darf nicht überschritten werden, um einer Schneiden Überlastung vorzubeugen.
- Positivere Schneide auswählen, wenn die Späne den "Spankamm" bekommen (siehe Bild).




Produktmanagement Fräsen 08.2016

Die maximale Spandicke sollte 0,15 mm nicht überschreiten.

Ermittlung des Belastungsfalles in Abhängigkeit der Bearbeitung

Bsp:

$$a_p / h x110 = 4 / 5,5 x100 = 73\%$$

 $a_e / D x110 = 60 / 80 x100 = 75\%$

Der Belastungsfall bestimmt die Vorauswahl des:

- Zahnvorschubs
- Schnittgeschwind. -Faktors F_{vc1}

Schnittgeschwindigkeits-Faktoren in Abhängigkeit der Anwendungsbeanspruchung und Auskraglänge:

		Schnittgeschw. Faktor F _{vc1}				
	Belastungsfall	L (%)	M (100%)	S (%)		
ISO:	Тур:					
	Kohlenstoffstahl	1,20		0,90		
Р	Legierter Stahl / Werkzeugstahl	1,15	mittlerer Wert lt. Iscar	0,85		
M	Rostbest. Stahl	1,20	Schneidstoff-	0,85		
K	GG und GGG	1,15	empfehlung	0,90		
Н	Gehärteter Stahl	1,30		0,85		

Schnittgeschwindkeitsfaktor in Abhängigkeit der Auskraglänge

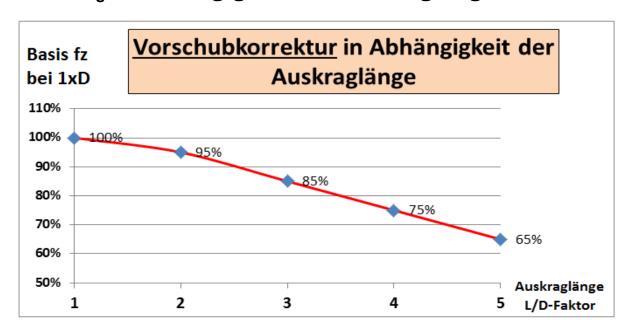
Auskraglänge	1•D	2 • D	3•D	4 • D	5-10 • D
Faktor F _{vc2}	1,0	1,0	0,8	0,7	0,6

- Schnittgeschwindigkeit aus Katalogtabelle passend zum Werkstückstoff und Schneidstoff ermitteln (mittlerer Wert). (Der Wert gilt für 20 min Standzeit bei 75% a_e/D)
- Lt. definiertem Belastungsfall den Schnittgeschwindigkeitsfaktor F_{vc1} gemäß Tabelle festlegen
- Lt. vorgegebener Auskraglänge (L/D) den entsprechenden Faktor (F_{vc2}) festlegen

Beispiel:

- Planfräsen (SOF45...) von hoch legiertem Werkzeugstahl
- Gewählt aus Katalog (Werkstoffgruppe 8): Vc für IC808 = 150 m/min
- Beanspruchungsart S (schwer) S → Faktor F_{vc1} = 0,85 (gleiche Beanspruchungsart wie bei der f_z -Bestimmung)
- Auskraglänge 3 D → Faktor F_{vc2} = 0,8
- **Berechnung:** 150 m/min 0,85 0,8 = 102 m/min (theoretisch für 20 min Standzeit)

Bestimmung der endgültigen Schnittgeschwindigkeit über den Standzeitfaktor


Standzeitfakto	r k _t			
Standzeit, min.	10	20	40	60
k _t	1,15	1,00	0,85	0,80

- Zielstandzeit definieren und Standzeitfaktor k₁ aus obiger Tabelle festlegen.
- Endgültige Schnittgeschwindigkeit durch Multiplikation aus Katalogauswahl, Belastungsfaktor und Standzeitfaktor berechnen.

Beispiel:

- Planfräsen (SOF45...) von hoch legiertem Werkzeugstahl
- Schnittgeschwind. bereits resultierend aus der Beanspruchungsart und L/D ermittelt (für Standzeit = 20 min, z.B. 102 m/min, siehe Seite 19)
- Zielstandzeit gewählt (z.B. 60 min, entspricht Faktor 0,8)
- **Berechnung:** 128 m/min 0,8 = 82 m/min (theoretisch für 60 min Standzeit)

Stabilitätsfaktor k_s in Abhängigkeit der Auskraglänge

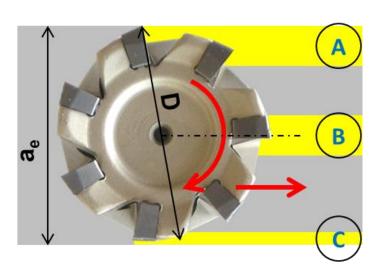
Der Vorschub-Faktor wird desweitern durch die u.g. Beurteilung der Fräsbearbeitung bestimmt:

k_s = 1,0 → Bei regulärer Stabilität

k_s = 0,7 → Bei instabilen Bearbeitungen (große Auskraglänge, labile Klemmung, dünnwandige Werkstücke etc.)

Bei <u>Hochvorschubfrässystemen</u> sollte nicht der Vorschub, sondern die <u>Schnitttiefe</u> um den Faktor <u>reduziert</u> werden!

User Guide Drehzahlerhöhung / Initialkontakt


a_e/D abhängige Drehzahlerhöhung

E% (Eingriffsverhältnis)	100%	50%	33%	25%	10%	5%
n Faktor	1	1,1	1,3	1,5	1,8	1,9

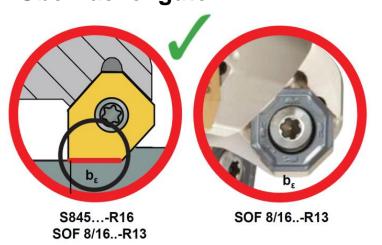
$$E\% = \frac{a_e}{D} \times 100 \ (\%)$$

Initialkontakt / Fräser Überlauf

Δ a_e/D > 75% meiden

- hoher Gegenlaufanteil -> hoher Verschleiß
- empfohlen nur bei Gusswerkstückstoffen

B a_e/D Bereich 40-60% wg. ungünstigem Initialkontakt meiden


- Anfangsspan-Dicke ~ h_{max}

C Fräser Überlauf an der Austrittsseite

- Optimal 0,05 D
- Bei Edelstählen (Austeniten) und HTSA so gering wie möglich halten (Entstehung ungünstiger Zugspannungen im Schneidstoff)

Optimierung beim Schlichten

Breitschlicht-WSP (Handling), Verbesserung der Oberflächengüte

- Auf die richtige Einbaulage der WSP achten!
- Der axiale Überstand der Breitschlicht-WSP zu den Standard-WSP soll im Bereich 0,03 bis 0,05 mm liegen.
- Der max. <u>Vorschub pro Umdrehung</u> ist auf 0,7 • Wiperbreite (b_ε) begrenzt!

Formeln: $v_f = f_z \cdot z \cdot n / f_u = f_z \cdot z$

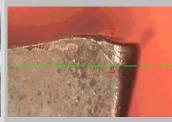
Werkzeugabhängige Maßnahmen zur Verbesserung der Oberflächengüte

- Eckenradius vergrößern
- Wendeschneidplatten mit Planfase an der stirnseitigen Nebenschneide
- Wendeschneidplatten in geschliffener Ausführung verwenden
- Planlauf des Fräsers überprüfen (max. 10 μm)
- Breitschlichtplatte einsetzen (bis Wkz-Ø 80 eine, ab Wkz-Ø 100 max. zwei Stk.)
- Einstellbare Fräser, Planlauf kleiner 10 μm

Oberflächengüten-Vergleichstab. **User Guide**

N-Werte	Ra µm	Rt μm (angenäh.)	Rz μm (angenäh.)	Verhältnis Rz zu Ra	alte Zeichen
N1	0,025	0,24 bis 0,40	0,22 bis 0,30	9:1 bis 12 :1	Δ
N2	0,05	0,49 bis 0,8	0,45 bis 0,60	9:1 bis 12:1	ΔΔΔΔ
N3	0,1	0,85 bis 1,45	0,80 bis 1,10	8:1 bis 11:1	Δ
N4	0,2	1,10 bis 2,40	1,0 bis 1,8	5:1 bis 9:1	7
N5	0,4	1,75 bis 3,60	1,6 bis 2,8	4:1 bis 7:1	ΔΔΔ
N6	0,8	3,2 bis 6,0	3,0 bis 4,8	3,8 bis 6:1	
N7	1,6	6,3 10,0	5,9 bis 8,0	3,7:1 bis 5:1	
N8	3,2	13,0 bis 19,5	12 bis 16	3,7:1 bis 5:1	ΔΔ
N9	6,3	25 bis 38	23 bis 32	3,7:1 bis 5:1	
N10	12,5	48 bis 68	46 bis 57	3,7:1 bis 4,6:1	
N11	25	95 bis 130	90 bis 110	3,6:1 bis 4,4:1	Δ
N12	50	190 bis 250	180 bis 220	3,6:1 bis 4,4:1	
N13	100	380 bis 500	360 bis 430	3,6:1 bis 4,4:1	

Freiflächenverschleiß


Kerbverschleiß

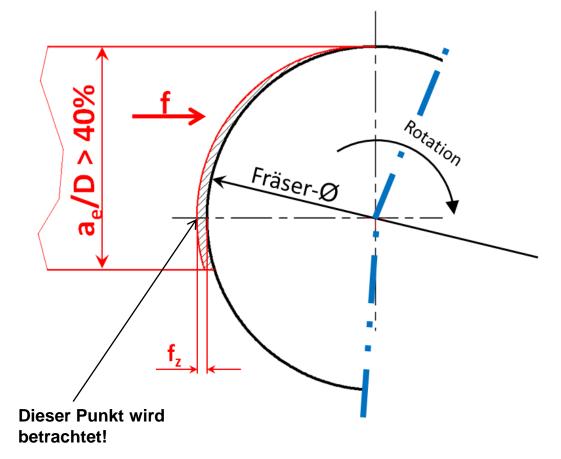
Kammrisse

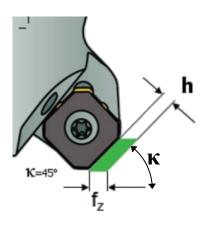
plastische **Deformation**

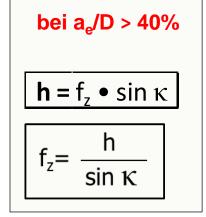
Bruch

Ursache:

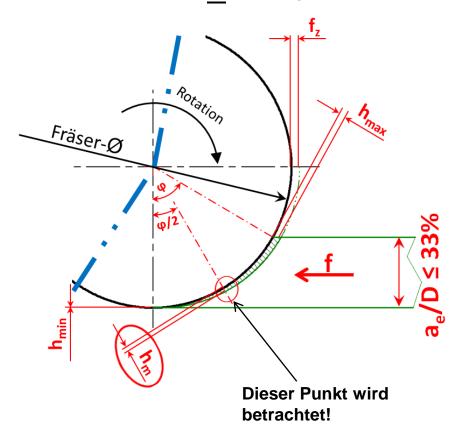
- zu hohe Temperatur in Kaltverfestigung durch der Schnittzone
- HM-Sorte nicht verschleißfest genug
- Vorschub zu gering
- mechan. Bearbeitung
- Guss- und Schmiedehaut
- unstabile Schneidengeometrie
- Wärmewechselspannungen
- stark unterbrochener Schnitt
- Thermoschock durch **KSS**


- Vorschub zu hoch
- Schnittgeschwindigkeit zu hoch
- Thermoschock durch **KSS**
- Schneidkante zu
- HM-Sorte zu hart
- Vibrationen


positiv


- Schnittgeschwindigkeit reduzieren
- härtere HM-Sorte auswählen
- Vorschub erhöhen
- Schnittgeschwindigkeit reduzieren
- zähere HM-Sorte auswählen
- stabilere Schneidengeometrie auswählen
- zähere HM-Sorte auswählen
- KSS Zufuhr verbessern
- Trockenbearbeitung
- Schnittgeschwindigkeit senken
- Vorschub reduzieren
- härtere HM-Sorte auswählen
- Schnitttiefe verringern
- Vorschub reduzieren
- stabilere Schneidengeometrie auswählen

Spanungsdicke \underline{h} (bei $a_e/D > 40\%$)



Für
$$\kappa = 45^{\circ}$$
 gilt: $h = f_z \bullet 0,707$

$$f_z = h \cdot 1,414$$

Mittenspandicke h_m

Mittenspandicke <u>h</u>_m (bei a_e/D ≤ 33%)

Allgem. Formel (exakte Berechnung)

$$\mathbf{h}_{m} = \frac{\mathbf{f}_{z} \bullet \mathbf{a}_{e} \bullet 360^{\circ} \bullet \sin \kappa}{\mathsf{D} \bullet \pi \bullet \phi_{s}}$$

$$\mathbf{h}_{\mathsf{m}} = \frac{\mathsf{f}_{\mathsf{z}} \bullet \mathsf{a}_{\mathsf{e}} \bullet 360^{\circ} \bullet \sin \kappa}{\mathsf{D} \bullet \pi \bullet \varphi_{\mathsf{s}}} \qquad \mathbf{\varphi}_{\mathsf{s}} = \sin^{-1} \bullet \frac{2 \bullet \sqrt{\mathsf{ae} \bullet (\mathsf{D} - \mathsf{a}_{\mathsf{e}})}}{\mathsf{D}}$$

Faustformeln

bei a₂/D ≤ 33% (für 90° Werkzeuge)

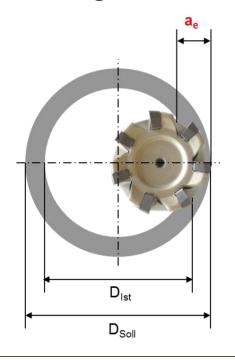
Mittlere Spandicke

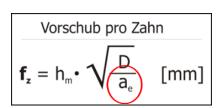
$$\mathbf{h}_{m} = f_{z} \cdot \sqrt{\frac{a_{e}}{D}}$$
 [mm]

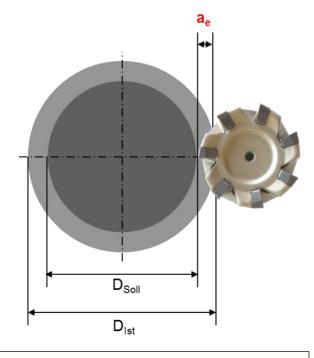
Vorschub pro Zahn

$$\mathbf{f}_z = \mathbf{h}_m \cdot \sqrt{\frac{\mathbf{D}}{\mathbf{a}_e}}$$
 [mm]

$$h_{max} \sim h_m \cdot 2$$
 [mm]


bei $a_e/D \le 33\%$ (für Anstellwinkel $\kappa < 90^\circ$)


Vorschub pro Zahn


$$\mathbf{f}_z = \mathbf{h}_m \cdot \sqrt{\frac{D}{\mathbf{a}_e}} \cdot \frac{1}{\sin \kappa}$$

Radiales Eingriffsverhältnis

Radiales Eingriffsverhältnis a_e/D beim zirkularen Fräsen

$$a_e = \frac{D_{Soll}^2 - D_{lst}^2}{4 \cdot (D_{Soll} - D_{Wkz.})}$$

$$a_e = \frac{D_{lst}^2 - D_{Soll}^2}{4 \cdot (D_{Soll} + D_{Wkz.})}$$

Eingriffsverhältnis E% =
$$\frac{a_e}{D}$$
 • 100 (%)

Allgemeine Formeln

Allgemeine Berechnungsformeln

Drehzahl

$$\mathbf{n} = \frac{\mathbf{v_c} \cdot 1000}{\mathsf{D} \cdot \mathsf{\pi}} \quad (\mathsf{mm}^{-1}) \qquad \mathbf{v_c} = \frac{\mathsf{D} \cdot \mathsf{\pi} \cdot \mathsf{n}}{1000} \quad (\mathsf{m/min})$$

Schnittgeschwindigkeit

$$\mathbf{v_c} = \frac{\mathsf{D} \bullet \pi \bullet \mathsf{n}}{1000} \quad (\mathsf{m/min})$$

Vorschubgeschwindigkeit

$$\mathbf{v_f} = \mathbf{f_z} \bullet \mathbf{z} \bullet \mathbf{n}$$
 (mm/min)

Zahnvorschub

$$\mathbf{f}_{\mathbf{z}} = \frac{\mathbf{v}_{\mathbf{f}}}{\mathbf{f}_{\mathbf{z}} \bullet \mathbf{n}} \quad (mm)$$

Zeitspanvolumen

$$\mathbf{Q} = \frac{\mathbf{a}_{p} \cdot \mathbf{a}_{e} \cdot \mathbf{v}_{f}}{1000} \quad (cm^{3}/min)$$

Hauptnutzungszeit

$$\mathbf{t_h} = \frac{\mathsf{L} \bullet \mathsf{i}}{\mathsf{V_f}} \quad (\mathsf{min})$$

Maschinenleistung in Stahl

$$\mathbf{P_{M \text{ nutz}}} = \frac{\mathbf{a_p} \cdot \mathbf{a_e} \cdot \mathbf{v_f}}{24000} \quad \text{(kW)}$$

Für Stahl bis 1000 N/mm², GGG50 -GGG60

Maschinenleistung in Guss

$$\mathbf{P_{M \text{ nutz}}} = \frac{\mathbf{a_p \bullet a_e \bullet v_f}}{30000} \quad \text{(kW)}$$

Maschinenleistung in Aluminium

$$\mathbf{P_{M \text{ nutz}}} = \frac{\mathbf{a_p \cdot a_e \cdot v_f}}{120000} \quad \text{(kW)}$$

Drehmoment

$$\mathbf{M} = 9550 \bullet \frac{\mathsf{P}_{\mathsf{M} \, \mathsf{nutz}}}{\mathsf{n}} \, (\mathsf{Nm})$$